Diagnosing subseasonal predictability of tropical atmospheric anomalies

Matt Newman CIRES, University of Colorado and NOAA/ESRL/PSD

Kathy Pegion

"Multivariate Red Noise" null hypothesis

$$d\mathbf{x}/dt = \mathbf{L}\mathbf{x} + \mathbf{F}_{s}$$

 $\mathbf{x}(t)$ is a series of maps, \mathbf{L} is stable, and \mathbf{F}_s is white noise (maps)

- Determine **L** and \mathbf{F}_s using "Linear Inverse Model" (LIM)
 - x is SST/OLR/200 and 850 mb wind 5-day running mean anomalies in Tropics, 1982-2009 (similar to Newman, Sardeshmukh, and Penland 2009, J. Climate)
 - prefiltered in reduced EOF space
 - LIM determined from specified lag τ_o =5 (e.g., the data averaging interval) as in AR1 model, using τ_o and zero-lag covariance of **x**
 - Test the LIM over much longer time intervals: observed spatiotemporal lag-covariance statistics very well reproduced
 - Hindcasts determined from cross-validation (10% data withheld to recompute L)

LIM has skill comparable to CFS2

OLR forecast skill, 1982-2009

LIM has skill comparable to CFS2

OLR forecast skill, 1999-2009

Using LIM to estimate predictability

$$dx/dt = Lx + F_s$$

L = constant, $F_s = additive$ (state-independent) noise.

$$\mathbf{x}(\mathbf{t} + \tau) = \left(\exp(\mathbf{L}\tau) \mathbf{x}(\mathbf{t})\right) \left(\varepsilon\right) = \mathbf{G}(\tau) \mathbf{x}(\mathbf{t}) + \varepsilon$$

"signal"

"noise"

Expected forecast error covariance

(assuming no initial error):

$$\mathbf{E}(\tau) = \langle \varepsilon \varepsilon^{\mathrm{T}} \rangle = \mathbf{C}(0) - \mathbf{G} \mathbf{C}(0) \mathbf{G}^{\mathrm{T}}$$

Expected forecast anomaly correlation

$$\rho_{\infty} = \frac{\mathbf{s}}{\sqrt{1+\mathbf{s}^2}}$$
, where $\mathbf{s}^2 = \mathbf{[GC(0) G^T]}_{ii}$

"Optimal" structure leading to greatest tropical OLR anomaly growth over 20 days

Shading: SST Contours: OLR

Vectors: 200 mb winds

Using LIM to identify relatively more skillful forecast cases a priori from forecast signal-to-noise ratio

Pattern correlation of tropical IndoPacific OLR hindcasts, 1982-2009, stratified by whether initial conditions do or do not strongly project on initial growth structure (SV1)

Two distinct eigenmode spaces in L

"coupled"

Longer eft, low frequency modes strongly modified by coupling within **L**

"internal atmospheric"

Short eft, high frequency modes only slightly modified by coupling within **L**

(Newman et al. 2009)

Eigenvalues of L and L_{uncoupled}

Maximum pattern correlation between corresponding full and uncoupled modes

Frequency (days-1)

Project tropical state vector **x** into "coupled" and "internal" subspaces of full operator **L**

Define

$$\mathbf{X} = \mathbf{X}^{\text{coup}} + \mathbf{X}^{\text{int}}$$

where

$$\mathbf{x}^{\text{coup}} = \sum_{j} \mathbf{u}_{j}^{\text{coup}} \alpha_{j}^{\text{coup}}(t) \qquad \mathbf{x}^{\text{int}} = \sum_{j} \mathbf{u}_{j}^{\text{int}} \alpha_{j}^{\text{int}}(t)$$

Note: x^{coup} and x^{int} need not be orthogonal

Using the LIM to "filter" the data

- 1. no temporal filter is applied
- 2. interannual variability defined dynamically

Optimal structure for 20-day OLR anomaly growth, decomposed into coupled and internal spaces

Maximum growth: coupled and internal spaces evolve from destructive to constructive interference

Shading: SST Contours: OLR

Vectors: 200 mb winds

Most LIM skill due to coupled space initial conditions for leads > 15 days

Pattern correlation of tropical IndoPacific OLR LIM hindcasts, 1982-2009, where forecast initial conditions are either:

Full
Coupled space only
Internal space only

Conclusions

- LIM useful for diagnosis of predictability, because its forecast skill is comparable with coupled GCMs and it reproduces observed spatio-temporal statistics
- In Tropics, two nonorthogonal linear dynamical systems:
 - Slow (~interannual) coupled space more predictable even for relatively "short" leads
 - Fast (~intraseasonal) internal atmosphere space less predictable, although MJO in this space
 - Projecting data onto coupled space acts as an effective "filter"; MJO indices may convolve dynamics
- Subseasonal forecast skill may itself be predicted based on LIM signal-to-noise
 - In LIM, there is no "spread/skill" relationship, but note this need not be a constraint for all linearly predictable systems
 - Plan to institute "forecasts of forecast skill" in LIM forecast web page http://www.esrl.noaa.gov/psd/forecasts/clim/

Bivariate correlation (CORR) and RMSE for PC1 and PC2

i. Definition of Intraseasonal anomaly

$$F' = F - F_c - F_L$$

F: Total field

F_c: Daily climatology

 F_L : Previous 90-day average of $F - F_c$

ii. Target period for calculating CORR and RMSE

9May1999 - 31Dec2009

- iii. Calculation of PCs
 - Base EOFs were computed with combined fields NOAA OLR and CFSR U200/ U850 (15S-15N average and 20-90-day filtered) (Wang et al. 2013.)
 - F' of pentad average from CFSv2, CLIM, and observations (NOAA OLR, and R1 U200/U850) are projected onto the base EOFs
 - The resulting PCs are normalized by the standard deviation of the PCs of the observation

